## ИССЛЕДОВАНИЕ ЭФФЕКТОВ КОГЕРЕНТНЫХ ВАРИАЦИЙ ТЕМПЕРАТУРЫ АТМОСФЕРЫ В ПЕРИОДЫ СЕЙСМИЧЕСКОЙ АКТИВНОСТИ

Свердлик Л.Г. (<u>l.sverdlik@mail.ru</u>)

Имашев C.A. (sanzhar.imashev@gmail.com)

Научная Станция Российской Академии Наук в г. Бишкеке



XVIII Всероссийская Открытая Конференция «Современные проблемы дистанционного зондирования Земли из космоса» Институт Космических Исследований РАН, Москва, 16-20 ноября, 2020

#### Исследование взаимосвязи между аномалиями температуры и сейсмичностью

Исследование взаимосвязи между аномалиями короткопериодных вариаций температуры в верхней тропосфере / нижней стратосфере (UTLS) и сейсмической активностью основано на ретроспективном анализе данных спутникового дистанционного зондирования. Основные задачи данного этапа:

- 1. Расширение набора исследуемых событий. Основное внимание уделялось региону Центральной Азии (Тянь-Шань и Северный Памир). В тоже время, для установления общих закономерностей проявления сейсмоатмосферных эффектов сильных землетрясений, были проанализированы события, произошедшие в сейсмически активных регионах Центральной и Юго-восточной Азии (Япония, Россия, Непал, Суматра) и в Средиземноморском регионе Европы (Италия, Турция, Кипр, Крит).
- 2. Усовершенствование алгоритма обработки и анализа спутниковых и сейсмических данных. Один из возможных вариантов состоит в исследовании динамики спектров вариаций температуры и комбинированном использовании разных высотных интервалов.
- 3. Выделение эффектов временной, пространственной и частотной когерентности в вариациях температуры в области UTLS над эпицентральными областями землетрясений. Представлены наиболее показательные примеры с результатами проведенных исследований пространственного и временного распределения аномалий температуры в зоне раздела тропосферы и стратосферы, в которых проявились определенные характерные особенности литосферно-атмосферной связи.

#### Данные спутниковых измерений температуры атмосферы

• *MERRA-2 Model* [*M213NPAM v5.12.4*], *Time Series, Area-Averaged of Air temperature, Instantaneous 3-hourly 0.5 x* 0.625 deg. [<u>http://giovanni.gsfc.nasa.gov/</u>]



• M2I3NPASM: MERRA-2 inst3\_3d\_asm\_Np: 3d, 3-Hourly, Instantaneous, Pressure-Level, Assimilated Meteorological Fields V5.12.4, 0.5 x 0.625 deg.[https://disc.gsfc.nasa.gov/datasets/]



### Исследуемые сейсмические события



Исследование выполнено в наиболее сейсмоактивной области Центральной Азии, расположенной в зоне сочленения двух крупнейших горных систем – Памира и Тянь-Шаня, которая выделяется на карте распределения эпицентров землетрясений. Проанализированы результаты, относящиеся к двум событиям: M=7.4 (19.08.1992) и M=5.8 (17.11.2015).

**Таблица.** Характеристики землетрясений М ≥ 5.0 по данным региональной сети KNET и глобальных каталогов USGS и ISC

| N⁰   | Date       | М   | Region                  |
|------|------------|-----|-------------------------|
| EQ01 | 19.08.1992 | 7.4 | Kyrgyzstan, Suusamyr    |
| EQ02 | 30.03.2003 | 5.3 | China                   |
| EQ03 | 16.01.2004 | 6.0 | Kyrgyzstan              |
| EQ04 | 25.12.2006 | 6.7 | Kyrgyzstan              |
| EQ05 | 08.01.2007 | 6.0 | Kyrgyzstan              |
| EQ06 | 05.10.2008 | 5.6 | Tajikistan              |
| EQ07 | 02.01.2010 | 5.3 | Tajikistan              |
| EQ08 | 19.01.2010 | 5.0 | Kyrgyzstan              |
| EQ09 | 17.03.2011 | 5.0 | China                   |
| EQ10 | 18.03.2011 | 5.0 | Kyrgyzstan              |
| EQ11 | 19.07.2011 | 6.1 | Kyrgyzstan              |
| EQ12 | 05.02.2012 | 5.6 | Kyrgyzstan              |
| EQ13 | 11.03.2013 | 5.4 | China                   |
| EQ14 | 14.11.2014 | 5.2 | Kyrgyzstan              |
| EQ15 | 17.11.2015 | 5.8 | Kyrgyzstan              |
| EQ16 | 27.12.2011 | 6.6 | Russia, Tuva            |
| EQ17 | 26.02.2012 | 6.7 | Russia, Tuva            |
| EQ18 | 11.04.2012 | 8.6 | Indonesia, Sumatra Isl. |
| EQ19 | 24.09.2013 | 7.7 | Pakistan, Baluchistan   |
| EQ20 | 12.02.2014 | 6.8 | China                   |
| EQ21 | 25.04.2015 | 7.8 | Nepal                   |
| EQ22 | 16.02.2015 | 6.7 | Japan, Honshu Island    |
| EQ23 | 12.05.2015 | 6.8 | Japan, Honshu Island    |
| EQ24 | 30.05.2015 | 7.8 | Japan, Ogasawara Isl.   |
| EQ25 | 23.10.2011 | 7.1 | Turkey                  |
| EQ26 | 20.05.2012 | 6.1 | Italy                   |
| EQ27 | 15.06.2013 | 6.3 | Greece, Crete           |
| EQ28 | 16.06.2013 | 6.1 | Greece, Crete           |
| EQ29 | 12.10.2013 | 6.8 | Greece, Crete           |
| EQ30 | 24.05.2014 | 6.9 | Aegean Sea, Gr/Tur      |
| EQ31 | 17.11.2015 | 6.5 | Greece                  |
| EQ32 | 30.10.2016 | 6.6 | Italy                   |

## Исследование атмосферных эффектов землетрясений в области UTLS



Блок-схема алгоритма обработки сейсмических и температурных данных. Выходным параметром алгоритма, изменения которого сопоставлялись С сейсмической активностью, являются показатели аномальных интегральные вариаций служат мерой  $D_{CORR}$ которые фактически когерентности или согласованности вариаций температуры на двух изобарических уровнях во времени



рограмм для ЭВМ 17 июля 2018 г жодитель Федеральной службы

ной собстве

Feleren

Г.П. Ивлие

Трансформация вертикальных профилей температуры (a) и аномалий температуры (b) в области верхней тропосферы / нижней стратосферы (UTLS) перед землетрясением M=5.8 (17 ноября 2015 г.). Временные ряды аномалий температуры в слоях 450–300 и 150–100 hPa (c) (маркерами отмечены моменты землетрясений с M>5.5 и M>4.0 с 7 по 21 ноября 2015 г.

## Пространственно-временное распределение аномалий температуры (землетрясение магнитудой М=5.8, 17.11.2015)



Эволюция пространственного распределения интегрального параметра D<sub>CORR</sub> в период подготовки и прохождения землетрясений M=5.8 (17.11.2015), M=4.0 (18.11.2015) и M=4.3 (19.11.2015) Высотно-временной разрез аномалий температуры атмосферы и суммарное суточное значение выделенной сейсмической энергии (log Es) в ноябре 2015 г.

#### Аномальные вариации температуры в верхней стратосфере

Поскольку, как видно из представленных вертикальных профилей, возмущение температуры перед крупными землетрясениями охватывали высотный диапазон от тропосферы до мезосферы (600–0.1 hPa), алгоритм был применен температурным данным выше и ниже стратопаузы (в данном случае 5.0 и 0.1 hPa).



15октября по 22 декабря 2015 г.

### Динамика спектров вариаций приращений разности температур

8

6

5

4



Модули коэффициентов вейвлет-преобразования вариаций приращений разности температур *Д*Т между уровнями 400 и 150 hPa (а), соответствующие вариации короткопериодной спектральной составляющей T=2 суток (b) и последовательность магнитуд землетрясений (с) в октябре-ноябре 2015



Расположение эпицентров землетрясений М≥5.0 в октябре – ноябре 2015 г. Выделена область восстановления спутниковых данных

Роль короткопериодных вариаций В формировании предсейсмических аномалий иллюстрируют результаты анализа временных рядов приращения разности  $\Delta T$ температур между исследуемыми 150 hPa. 400 уровнями И В качестве примера рисунке представлено на изменение времени амплитуды 2-х BO суточной спектральной компоненты. Очевидно, сейсмическую что локальную активность предваряло характерное увеличение амплитуды этих вариаций.

## Пространственно-временное распределение аномалий температуры (землетрясение M=7.4, 19.08.1992 г.)



Временные ряды температуры на уровнях от 300 до 100 hPa (a) и динамика изменения параметра D<sub>CORR</sub> (b) и распределение логарифма сейсмической энергии (log Es) (c) в 1992



Изменение выделенной сейсмической энергии (Es) в августе 1992 г.



Афтершоковое поле землетрясения М=7.4 (северный Тянь-Шань) 19.08.1992 г. (а) и распределение количества землетрясений за каждый месяц 1991–1993 гг. (b)



Эволюция пространственного распределения параметра D<sub>CORR</sub> в период подготовки землетрясения магнитудой M=7.4 (19 августа 1992 г., 02:04:36). Максимум в развитии аномалии наблюдался за ~8 ч до события

## Динамика периодичностей вариаций температуры в области UTLS



Динамика спектров вариаций температуры, построенные для диапазона периодов от 0.125 до 64 суток на уровнях 100 и 300 hPa в 1992 г. Значительное возмущение температуры (T=6-12 суток) одновременно проявлялось на обоих изобарических уровнях и предшествовало землетрясению M=7.4 Квадрат когерентности между коэффициентами вейвлет-преобразования спектров вариаций температуры двух временных рядов на изобарических уровнях 300-100 hPa и 600-100 hPa. Хорошо выраженные интенсивные колебания в диапазоне периодов 6–12 суток в первые декады августа 1992 г. Трансформация волновых проявлений в вертикальных профилях нормированных флуктуаций температуры до и после землетрясения М=7.4



Трансформация вертикальных профилей аномалий температуры (а) и нормированных флуктуаций температуры (b) до и после землетрясения М=7.4



Вейвлет-спектры спутниковых профилей возмущений температуры 18 и 21 августа 1992 г.

Иллюстрацией изменений высотного распределения и характерных длин волн возмущений температуры являются волновые проявления в вертикальных профилях и соответствующих им вейвлет-спектрах аномалий температуры до и после землетрясения (18 и 21 августа 1992 г.) в интервале высот от 5.0 до 60.0 км. Наиболее интенсивные гармоники предваряли сейсмическое событие и наблюдались в области UTLS. Основной вклад вносили колебания с вертикальной длиной волны  $\lambda_z$ =11.0–12.0 км. После землетрясения ( $\lambda_z$ =15.0–20.0 км) сместились в область стратов и 18.0 км). Наиболее интенсивные возмущения ( $\lambda_z$ =15.0–20.0 км) сместились в область стратопаузы.

# Пространственное распределение аномалий температуры в области тропопаузы, относящиеся к сейсмическим событиям М ≥ 5.0, произошедшим на территории Памира и Тянь-Шаня



Пространственное распределение интегрального параметра аномальных вариаций D<sub>CORR</sub> в периоды подготовки землетрясений M> 5.0 (маркерами показаны расположения эпицентров сейсмических событий EQ01–EQ03 и EQ05–EQ10, обозначения соответствуют Таблице)

#### Заключение

Проанализированы пространственно-временные изменения температуры атмосферы, полученные по данным спутникового дистанционного зондирования над эпицентральными областями двух землетрясений: M=5.8 (17.11.2015) и M=7.4 (19.08.1992). В качестве главных признаков, характеризующих поведение температуры атмосферы перед сейсмическими событиями, рассматривались аномальные изменения амплитуды, частоты и фазы вариаций температуры, происходящие в областях, характеризующихся сменой знака вертикального градиента температуры. Представленные пространственные и временные распределения областей повышенных значений параметра аномальных вариаций температуры указывают на вероятную связь с сейсмическим процессом. Расчеты показывают, что наиболее интенсивные волновые возмущения наблюдались за несколько дней до землетрясения, главным образом, на границах раздела слоев атмосферы.

Результаты проведенного исследования показывают наличие эффектов временной, пространственной и частотной когерентности короткопериодных вариаций температуры в области тропопаузы, предшествующих сильным землетрясениям.

